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I. I NTRODUCTION

We consider the problem of improving the performance
of scientific computing applications that rely on user-defined
high-level abstractions to manage software and hardware com-
plexity. Although conventional compilers implement a wide
range of optimization techniques, they frequently miss oppor-
tunities to optimize the use of abstractions, largely because
they are not designed to recognize and use the relevant seman-
tic information about such abstractions. As a result, developers
today either accept the idea of an “abstraction penalty” and
live with relatively poor performance, or manually rewrite
their code to use lower-level constructs and obtain better
performance at the cost of maintainability and portability.

In this paper, we propose a set of annotations to help com-
municate high-level semantic information about abstractions
to the compiler, thereby enabling the large body of traditional
compiler optimizations to be applied to the use of those
abstractions. These annotations explicitly describe properties
of the abstraction needed to guarantee the applicability and
profitability of particular optimizing transformations.

Our annotations are influenced by our practical experience
with optimizations that have or are likely to have a significant
impact on applications used throughout the U.S. Department of
Energy (DOE) research laboratories. Though not all-inclusive,
these annotations permit a broad variety of classical op-
timizations, including memoization, reordering, data layout
transformations, and inlining and specialization, to be applied
to the use of abstractions. This paper generalizes our earlier
research on the optimization of array abstractions [22] to
arbitrary user-defined abstractions.

Figure 1 shows the simplified example of a user-defined
abstraction that exhibits many features of typical unstructured
mesh computations within scientific computing applications.
Specifically, theMeshclass represents a user-defined abstrac-
tion, and thecompute()procedure is a user’s algorithm that
operates on aMeshobject. TheMeshclass is conceptually a
container of nodes and edges, where an edge connects two
nodes, andMeshprovides a means to iterate over either nodes
or edges. An important property ofMesh is that there is a
many-to-one and onto mapping (surjection) of edges to nodes.

Figure 1. User-defined abstraction example.
1 class Node{ // ...

public: int id (); double eval (double a );
3 };

class Edge{ // ...
5 public: Node∗node1();Node∗node2();
};

7 class Mesh{ // ...
public:

9 Edge∗ get edge(int i );
Node∗ get node(int i );

11 int nodesize (); int edgesize ();
};

13

void compute(Mesh& m, doublea) {
15 for ( int i = 0; i < m.edgesize (); ++i) {

Edge∗ e = m.get edge(i );
17 // ...

double a = e−>node1()−>eval(a);
19 double b = e−>node2()−>eval(a);

bar (a, b);
21 // ...

}
23 }

The procedurecompute()implements some algorithm that is
most naturally expressed as iteration over edges, but repeatedly
calls an expensive and side-effect free functioneval on each
node. Because of the surjection, we can optimizecompute()by
precomputingeval on all nodes (memoization), yielding the
optimized implementation shown in Figure 2. White,et al.,
showed a2× speedup by applying this specific memoization
to a realistic benchmark extracted from a DOE code [19].

Figure 3 shows how we specify the properties ofMesh
as annotations, to enable the translation of Figure 1 into
Figure 2. The annotations describe aliasing properties of the
data abstractions, and side-effect properties of the function
abstractioneval(). Moreover, we can specify properties of the
data structure (such as lower and upper bounds on the ratio of
edges to nodes) that could influence subsequent profitability
analyses.

The optimized code in Figure 2 is more complex and



Figure 2. compute()optimized by memoization.
1 void computeoptimized(Mesh& m, doublea) {

vector<double> a precomp (m.nodesize ());
3 for ( int i = 0; i < m.nodesize(); ++i) {

Node∗n = m.get node(i );
5 a precomp[n−>id()] = n−>eval(a);

}
7

for ( int i = 0; i < m.edgesize (); ++i) {
9 Edge∗e = m.get edge(i );

// ...
11 double a = aprecomp[e−>node1()−>id()];

double b = a precomp[e−>node2()−>id()];
13 bar (a, b);

// ...
15 }
}

Figure 3. Annotations for Mesh.
class Node: hasvalue { id = this . id (); }

2 class Edge: hasvalue {
n1 = this .node1(); n2 =this .node2();

4 };
operator Node::eval (double a) :

6 read { this ,a}; modify none; alias none;
class Mesh : hasvalue{

8 nsize = this . nodesize (); esize =this . edgesize ();
nodes( i :0: nsize)=this . get node( i );

10 edges( i :0: esize ) =this . get edge( i );
};

12 restrict value { nodes( i ). id 6=nodes( j ). id ; }
neveralias (edges( i ). n1) = edges( i ). n2;

14 neveralias (edges( i )) = edges( j ) : j6= i ;
neveralias (nodes( i )) = nodes( j ) : j6= i ;

16 mustalias (nodes( j )) = edges( i ). n1or edges( i ). n2;
restrict value {esize≥ nsize ∗ k1; esize≤nsize∗ k2}

difficult to debug, so it is undesirable to introduce by hand ev-
erywhere. Additionally, whether the optimization is profitable
will vary by computer architecture. Although the optimization
can be automated as a source-to-source transformation, the
transformation is heavily dependent on the semantics of the ab-
straction so that a conventional compiler is unlikely to discover
such an optimization opportunity. Vendor compilers rarely
introduce optimizations that require additional storage, due to
the complexity of their analysis. In the following sections,
we use this example to motivate the need for annotations to
support the difficult program analysis required to know when
such optimizations may be used profitably.

Our annotations, presented in Section III, provide an open
interface for developers to communicate the semantics of their
abstractions to the compiler. These annotations complement
program analysis when compiler analysis is insufficient to
enable optimizations, as discussed in Section II. Whether an
abstraction is annotated automatically or specified by the de-
veloper, traditional optimizations can be naturally extended to
use the annotations and then applied to uses of the abstraction.
We describe such extensions in Section IV, using examples of

optimizations important to DOE laboratory applications. We
are implementing these ideas in the ROSE source-to-source
compiler infrastructure (Section V) [14], [16].

II. OPTIMIZING USER-DEFINED ABSTRACTIONS WITH

TRADITIONAL OPTIMIZATIONS

In contrast to built-in types, user-defined abstractions are
constructed using the base language. If a compiler aims at
optimizing the use of these abstractions, it must first infer
the abstraction semantics through analysis of their implemen-
tations. As a compiler must preserve the input program’s
semantics, it performs a conservative analysis of the pro-
gram and compromises precision with respect to correctness.
Consequently, we might lose opportunities for optimization.
Therefore the compiler often performs very limited optimiza-
tions when some properties of the user-defined abstractions
cannot be established automatically by the analysis. Most
of the missing optimizations can be applied by a compiler
if the missing information from analysis is provided. We
give a short overview of traditional optimizations that can be
applied to code that uses abstractions, and summarize their
salient properties. The optimizations can be separated into the
following categories.

• Memoization optimizations. These optimizations use data-
flow analysis to determine results of computations that
can be saved (memoized) for later reuse, thereby avoiding
redundant computation. For example, to perform common
subexpression elimination the analysis must compute
available expressions(expressions whose results have
already been computed) at the entry of each basic block.
If a statement contains a function call for which program
analysis cannot precisely determine possible side effects,
the function call may potentially render the previous com-
puted results of all expressions invalid. Therefore, those
expressions must be considered not available and must be
recomputed after the function call. Similar problems exist
for loop invariant code motion (which uses loop invariant
detection analysis) and strength reduction optimization
(which uses induction variable detection analysis). A
special case of memoization isdead code elimination,
where computations that will never be used are eliminated
completely. If properties such as side-effects of methods
are specified using annotations, these memoization op-
timizations can be applied to code fragments that use
abstractions unknown to the compiler. We discuss this in
more detail below.

• Reordering optimizations. These optimizations perform
dependence analysis to determine reordering constraints
between each pair of statement (or instruction) instances.
Statements (or instructions) are then reordered to better
utilize the computer resources. Examples of reordering
optimizations include instruction scheduling for better
CPU utilization, loop transformations such as loop fusion
and blocking for better memory hierarchy performance,
and automatic parallelization and communication opti-
mizations for better utilization of multiprocessors.



• Data layout optimizations. These optimizations aim at
rearranging the layout of data structures to accommodate
resource constraints of computers. Examples include reg-
ister allocation, scalar replacement, and array padding.
Our annotations permit specifying several properties of
arrays.

• Abstraction inlining and specialization. Such optimiza-
tions aim at eliminating or reducing the overhead of intro-
ducing user-defined abstractions in programs. Such over-
heads include the cost of making function calls, missed
optimization opportunities due to abstraction boundaries,
as well as inefficient data grouping and additional indi-
rections due to the necessity of data abstraction. Opti-
mizations of this category include procedure inlining and
specialization, data structure splitting, and elimination of
indirection.

Besides data-flow analysis and dependence analysis, one
additional program analysis, pointer analysis, is critical to
performing all the above optimizations effectively. In most
languages, objects of user-defined abstractions are allocated
on the heap and shared using pointers, so pointer analysis
is required to reason about their behavior. In object-oriented
languages, polymorphism and dynamic functions complicate
the problem of pointer analysis. Pointer analysis becomes
more problematic in languages such as C and C++, which
use unconstrained pointers to represent memory as a block
of bytes. Although good linear algorithms exist for pointer
analysis of stack-allocated variables, the modeling of the heap
remains a challenge, with algorithms ranging from linear to
double exponential analyses. These problems can be alleviated,
if not solved, using abstractions with user-defined annotations.

In summary, conventional compilers try to optimize an
input program by transforming both the computation and
data organizations of the program. As the entire program
is composed of many user-defined abstractions, compilers
perform interprocedural program analysis to gather informa-
tion across function boundaries, and eliminate abstraction
boundaries through function inlining when necessary.

For interprocedural analysis (whole program analysis), we
need to consider all effects on function parameters, return
values, and global variables. When analyzing function calls,
different levels of precision can be accomplished with call-
strings or assumption sets. For object-oriented programs, the
modeling of the heap and the states of objects becomes
increasingly important. Data hiding and the encapsulation of
object states allows modular program analysis, but in general,
the scalability of an analysis for real-world applications must
be addressed by storing results of previous analysis passes.
This becomes particularly important when libraries are used.

In the next section, we describe annotation languages that
are suitable for describing properties of user-defined abstrac-
tions. Specifically, the results of an analysis can be represented
as annotations, and users themselves can provide additional
information about the semantics of an abstraction. We focus on
specific properties that are required to ensure the correctness
of transformations. These annotations enable cross-abstraction

optimizations without eliminating the abstraction boundary.

III. A NNOTATING USER-DEFINED ABSTRACTIONS

In most languages that support abstractions in user-defined
types, the abstractions can be separated into two categories:
function abstractions and data abstractions. Additionally, lan-
guages such as C++ support object-oriented abstractions,
where different function and data abstractions can relate to
each other through subtype relations and through inheritance.

Function (or procedure) abstractions represent algorithms
that operate on data. The operations might be as simple as
returning the value of a field within a compound data structure,
or as complex as sorting elements in a container. Their
semantics can be expressed in terms of what restrictions the
input data must satisfy before entering the operation, what data
are being modified by the operation, and what properties and
relations the resulting data would satisfy after the operation.

Data abstractions are encapsulated collections of values that
relate to each other. The semantics of data abstractions are
normally expressed in terms of properties and invariants that
must be satisfied by the data stored in the abstraction. For
example, in a singly-linked list, pointers connecting elements
must be acyclic. Because implementation details of abstrac-
tions are not visible to the outside, such properties can often
be described in terms of abstract attributes of the abstraction.
These attributes are abstract in that they do not necessarily
have concrete storage in the abstraction.

Figure 4 shows the grammar and examples of some anno-
tations that we developed for optimizing loops that operate
on user-defined array abstractions [22]. The annotations in
Figure 4 are preliminary and need to be extended in many
ways. However, as shown in the following, these annotations
serve as informative examples to illustrate what semantics
need to be described by a complete annotation language.

A. Function Annotations

In Figure 4(b), all annotations except (1) and (5) are function
annotations. These annotations describe semantics of functions
that operate on thefloatArray andRange data abstractions,
which in turn are described in (1) and (5). The semantics of
these functions can be separated into the following categories.

• Restrictions on the inputs of the operation. In Figure 4(a),
three annotations,read, allow-alias, andrestrict-value
are used to describe input data of a function abstraction.
As shown in examples (2), (4), (6) and (8) in Figure 4(b),
read lists all the memory locations that are accessed
by the operation;allow-alias describes restrictions on
aliasing relations between locations of the input data—
everything not listed inallow-alias cannot be aliased
with other inputs;restrict-value describes relations be-
tween values of input data. Note thatrestrict-value can
also be used to describe relations between input data and
results, as illustrated in examples (6) and (8).

• Modification side-effects. In Figure 4(a), themodify
annotation describes modification side effects, specifi-
cally, what data (variables) are modified by the operation.



<annot> ::= <annot1> | <annot1>;<annot>
<annot1> ::= class<cls annot>

| operator <op annot>
<cls annot> ::= <clsname>:<cls annot1>;
<cls annot1>::=

<cls annot2> | <cls annot2> <cls annot1>
<cls annot2>::= <arr annot>

| inheritable <arr annot>
| has-value{ <val def> }

<arr annot>::= is-array{ <arr def>}
| is-array{define{<stmts>}<arr def>}

<op annot> ::= <opdecl> : <op annot1> ;
<op annot1> ::=

<op annot2> | <op annot2> <op annot1>
<op annot2> ::= modify <namelist>

| new-array (<aliaslist>){<arr def>}
| modify-array ( <name>) {<arr def>}
| restrict-value {<val def list>}
| read <namelist>
| alias <nameGrouplist>
| allow-alias <nameGrouplist>
| inline <expression>

<arr def> ::=
<arr attr def> | <arr attr def> <arr def>

<arr attr def> ::= <arr attr>=<expression>;
<arr attr> ::= dim | len (<param>)

| elem(<paramlist>)
| reshape(<paramlist>)

<val def> ::= <name>; | <name>;<val def>
| <name> = <expression> ;
| <name> = <expression> ; <val def>

(a) grammar

(1) class floatArray:
inheritable is-array{ dim = 6;

len(i) = this.getLength(i);
elem(i$x:0:dim-1) = this(i$x);
reshape(i$x:0:dim-1) = this.resize(i$x);};

(2) operator floatArray::operator =
(const floatArray& that):
modify-array (this){

dim = that.dim; len(i) = that.len(i);
elem(i$x:1:dim) = that.elem(i$x);};

(3) operator +(const floatArray& a1,double a2):
new-array (){ dim = a1.dim; len(i) = a1.len(i);

elem(i$x:1:dim) =a1.elem(i$x)+a2; };
(4) operator floatArray::operator ()
(const Range& I):
restrict-value{ this = { dim = 1; } };

result ={dim = 1; len(0) = I.len;}; };
new-array (this){ dim = 1; len(0) = I.len;

elem(i) = this.elem(i∗I.stride + I.base);};
(5) class Range:has-value{stride; base; len;};
(6) operator Range::Range(int b,int l,int s):
modify none; read{ b, l, s}; alias none;
restrict-value{ this={base =b;len= l;stride= s;};};
(7) operator floatArray::operator() (int index) :
inline { this.elem(index)};
restrict-value{ this = { dim = 1; };};
(8) operator + (const Range& lhs, int x ) :
modify none; read{lhs,x}; alias none;
restrict-value{ result={stride=lhs.stride;

len = lhs.len; base = lhs.base + x;};};

(b)example

Fig. 4. Annotation language

The items listed bymodify must include all memory
storage reachable from the function parameters and global
variables.

• Relations between results and inputs. In Figure 4(a),
the annotationsnew-array, modify-array, restrict-
value, and alias can all be used to describe relations
between the results and the inputs of an operation. The
annotationsnew-array and modify-array are specific
to array abstractions. Therestrict-value annotation de-
scribes relations between values of inputs and results. The
alias annotation describes the aliasing relations between
inputs and results.

• Rewrite annotations. In Figure 4, theinline annotation
is essentially a transformation directive that eliminates
abstraction boundaries. It describes an operation by re-
placing it with a collection of equivalent operations. The
inline annotation therefore can be seen as a transforma-
tion specification for rewriting function abstractions.

B. Data Annotations

In Figure 4(b), examples (1) and (5) describe the semantics
of user-defined data abstractions. Specifically, they describe
properties of thefloatArray and Range classes. These
properties can be separated into the following categories.

• Data attributes. In Figure 4(b), example (1) uses theis-
array annotation to specify that thefloatArray class

has three data attributes:dim, len andelem, wheredim
is a single scalar value, andlen andelem are collections
of values that are indexed by a sequence of integer
parameters. Similarly, example (5) uses thehas-value
annotation to specify that theRange class has three data
attributes:stride, base and len, where all the attributes
are scalar values. Data attributes conceptually model
the values stored within a data abstraction. However,
internally the values may be implicitly represented in
various forms and concrete storage may not be found
for the specified attributes.

• Properties of attributes and relations among them. In
Figure 4(b), when example (1) usesis-array to describe
floatArray, it implicitly conveys thatfloatArray has
Fortran90 array semantics; that is, thedim and len
attributes describe the shape of the array, theelem
attribute returns the elements within the array, and no
elements of the array are aliased. Similarly, the attributes
described in example (5) for theRange class must
satisfy len ≥ 0. The allow-alias and restrict-value
annotations in Figure 4 need to be extended to describe
such properties. Figure 3 shows some of the extensions
to these annotations.

• Relation between attributes and functions. In Figure 4,
each attribute declaration must be followed by a defini-



tion, which includes function calls necessary to extract the
attribute values from the data abstraction. Furthermore,
functions that operate on data abstractions are described
in terms of their effects on the attributes. Examples of
such annotations are discussed in more detail in Sec-
tion III-A.

• Rewrite annotations. In Figure 4, theis-array annotation
specifies a collection of definitions that can be used
to replace an array abstraction under certain conditions.
Specifically, we can replace the array abstraction with a
more efficient equivalent implementation. Such annota-
tions are very similar to theinline directive in exam-
ple (7) and are used solely for optimization purposes.

C. Object-oriented annotation

In object-oriented languages, user-defined abstractions can
inherit from each other and have sub-type relations among
one another. For example, in C++, a derived class can adapt
the behavior of its superclasses by re-implementing virtual
functions. An abstraction annotation language therefore must
model relationships between different abstractions. In Fig-
ure 4(b), theinheritable annotation in example (1) specifies
whether the array semantics described by theis-array an-
notation can be inherited by subclasses offloatArray. In
general, an annotation language needs to support not only
the inheritance of various semantic properties, it must also
provide mechanisms to specify how behaviors of abstractions
are adapted by inheritance.

D. Discussion

The annotations in Figure 4 are far from becoming a
complete annotation language, which is the topic of our
future research. This section uses our prior experience to
summarize and to speculate on what properties of user-defined
abstractions need to be described by an annotation language
in order to significantly extend the applicability of compiler
analysis and optimizations.

An annotation language is not complete unless we can
verify that the specified properties reflect the implementations
of abstractions. Otherwise, misinformed annotations would
lead compilers to generate incorrect programs. We believe
that identifying what properties need to be annotated is a
significant step toward verifying such properties, as program
analysis often needs external annotations from programmers
to be effective. Our future research includes both identifying
additional annotations that would benefit compiler optimiza-
tions and developing program analysis techniques to verify
such annotations.

IV. EXTENDING TRADITIONAL OPTIMIZATIONS

Conventional compilers often fail to apply the optimizations
discussed in Section II to codes that use user-defined abstrac-
tions due to the lack of information about the semantics of
these abstractions, which are often obscured from traditional
compiler analysis for the following reasons.

1) Compiler analysis must conservatively approximate be-
haviors of the input program (e.g., due to lack of runtime
information) so that the abstraction properties required
for an optimization cannot be established.

2) In order to establish useful properties of user-defined
abstractions, compilers must perform interprocedural
analysis. But programs typically use many libraries,
making whole-program analysis too expensive to be
practical.

3) The source code of a library may not be available to the
compiler, and the compiler cannot extract the required
information from the library’s object code.

All three problems can be addressed with annotations as
follows.

1) Since the programmer is aware of the semantics of
abstractions that he defines, he can explicitly specify
properties of his abstractions using annotations.

2) A separate library analysis can generate the annotations
as each library is processed (compiled). The annotations
can be saved and serve as external descriptions of the
properties of user-defined abstractions.

3) If no source code of a library is available, it suffices to
annotate the library’s interface and make such annota-
tions available to optimizations of the application (that
uses the library). This solution does not permit inlining
of library code (when not available from the C++ header
files).

Using the annotations discussed in Section III, we can
extend traditional program analysis with high-level semantics
of user-defined abstractions. After integrating the additional
information from annotations, the extended analysis is “aware”
of the specific properties of user-defined abstractions.

An abstraction-aware analysis(A3) uses information spec-
ified by external annotations to combine the semantics of
built-in types with the properties of user-defined abstractions.
Specifically, it computes more precise information regarding
program behavior to facilitate more advanced traditional op-
timizations. Consequently, the annotations have bridged the
semantic gap due to imprecision of conservative static analysis,
impractical scalability of whole-program analysis, and the lack
of a sufficient high-level representation of libraries (missing
source code).

When program analysis becomes abstraction-aware through
external annotations, traditional optimizations are naturally
extended accordingly to be abstraction-aware. For example,
in our running example in Figure 3, the functioneval is
annotated to indicate that it does not modify the variablesa
and this and that it creates no aliasing. Thus, calling this
function does not change the object’s state. This information
is crucial for traditional analysis such asavailable expressions
analysisor very busy expression analysis. In our approach,
we extend the analysis to include such function calls that do
not change the object’s state in in the collection of available
expressions. Based on the results of available expressions
analysis, redundant expressions can be eliminated. Hence, we



Optimization A1 A2 A3 A4

Common subexpression elimination no no no no
Loop transformations no no no no
Procedure inlining no yes yes no
Structure splitting no yes no yes
AA Scalar replacement yes no yes yes
AA Loop transformations yes no yes yes
AA Common subexpression elimination yes no yes no
OpenMP parallelization of container itera-
tion

yes no yes yes

Iteration-space narrowing yes no yes no
Iteration-space partitioning yes no yes no
and loop specialization
Iteration-space tiling yes no yes yes
Precomputation yes yes yes no
Array abstraction translation yes yes no yes
Elimination of indirection yes yes yes yes

TABLE I

OPTIMIZATIONS CLASSIFIED IN FOUR DIFFERENT ASPECTS

can similarly perform library-aware redundancy elimination on
applications that use libraries.

Table I enumerates a collection of optimizations that we
have identified as crucial for improving the performance of sci-
entific applications used within the DOE laboratories, several
of which are described by White,et al. [19]. This optimization
classification table shows that we have identified different
categories of optimizations, defined by the combination of the
following aspects of an optimization.

A1. Does the optimization require high-level semantics of
the user’s abstraction (first column)?

A2. Does the optimization eliminate abstraction layer-
s/boundaries? (second column)

A3. Does the optimization apply to function abstractions?
(third column) For example, procedure inlining elimi-
nates a function abstraction. Note that this optimization
applies to the application code, not the library (the
function remains in the library).

A4. Does the optimization apply to data abstractions or
use semantics of data abstractions? (fourth column) For
example, when applying structure splitting, the data
abstraction of the original structure is eliminated and
replaced by new data structures.

A special category in Table I, neither requires high-level
abstraction semantics nor eliminates abstraction layers. This
category includes most of the optimizations in conventional
compilers, such as common subexpression elimination, scalar
replacement, and loop transformations.

Three optimizations are explicitly denoted as Abstraction
Aware (AA) optimizations. For these optimizations, we have
found that their corresponding traditional optimizations, scalar
replacement, loop transformations, and common subexpression
elimination without utilizing annotations, are essential as well
in improving the performance of our applications. Other
optimizations such as the OpenMP parallelization is based on
the high-level semantics of STL containers and the iterators
defined for it [13].

Most conventional compilers implement optimizations that
do not require elimination of any abstractions, compilers.
Some also implement non-trivial optimizations that does not
require high-level semantics of abstractions but eliminates
user-defined abstractions, such as structure splitting. In con-
trast, all the abstraction-aware optimizations require anno-
tations, especially when the required properties cannot be
established by a conventional program analysis. Even more ad-
vanced transformation capabilities are required for a compiler
infrastructure to permit optimizations such as array abstraction
translation, which we have demonstrated using ROSE [14].

We also identified optimizations for which we did find use-
ful abstract-aware extensions. Those optimizations are mostly
applied in the back-ends of compilers. Examples of such
optimizations includecode selection, which can be performed
by Bottom Up Rewrite Systems (BURS) with tools such as
burg or iburg, but are not useful at the AST level in our
experience because burg requires absolute values as weights
for the selectable instructions.

V. ROSE INFRASTRUCTURE

We are implementing our work on optimizing user-defined
abstractions within ROSE, a U.S. Department of Energy
(DOE) project to develop an open-source compiler infrastruc-
ture for optimizing large-scale (on the order of a million lines
or more) DOE applications [14], [16]. The ROSE framework
enables tool builders who do not necessarily have a compiler
background to build their own source-to-source optimizers.
The current ROSE infrastructure can process C and C++
applications, and we are extending it to support Fortran90 as
part of on-going work.

The ROSE infrastructure provides several components to
build a source-to-source optimizer. A complete C++ front-end
is available that generates an object-oriented abstract syntax
tree (AST) as an intermediate representation. Optimizations
are performed on the AST. The AST preserves the high-level
C++ language representation so that no information about the
structure of the original application (including comments) is
lost. A C++ back-end can be used to unparse the AST and
generate C++ code. The user builds the “mid-end” to analyze
or transform the AST, and ROSE assists by providing a num-
ber of mid-end components, including a predefined traversal
mechanism, an attribute evaluation mechanism, transformation
operators to restructure the AST, and predefined optimizations.
ROSE also provides support for library annotations whether
they be contained in pragmas, comments, or separate annota-
tion files.

A. Front-End

We use the Edison Design Group C++ front-end (EDG) [7]
to parse C and C++ programs. The EDG front-end generates an
AST and performs a full type evaluation of the C++ program.
This AST is represented as a C data structure. We translate
this data structure into an object-oriented abstract syntax tree,
SAGE III, based on Sage II and Sage++ [3]. SAGE III is used
by the mid-end as an intermediate representation. Full template



support permits all templates to be instantiated, as required,
in the AST. The AST passed to the mid-end represents the
program and all the header files included by the program.
The SAGE III IR has 240 types of IR nodes, as required to
represent fully the original structure of the application in the
AST.

B. Mid-End

The mid-end permits the analysis and restructuring of the
AST for performance improving program transformations.
Results of program analysis are attached to AST nodes. The
AST processing mechanism computes inherited and synthe-
sized attributes on the AST. An AST restructuring operation
specifies a location in the AST where code should be inserted,
deleted, or replaced. Transformation operators can be built
using the AST processing mechanism in combination with
AST restructuring operations.

ROSE internally implements a number of forms of pro-
cedural and interprocedural analysis. Much of this work is
in current development. ROSE current includes support for
dependence, call graph, and control flow analysis.

To support whole-program analysis, ROSE has additional
mechanisms to store analysis results persistently in a database
(e.g., SQLite or MySQL), to store ASTs in binary files, and to
merge multiple ASTs from the compilation of different source
files into a single AST (without losing project file and directory
structure).

C. Back-End

The back-end unparses the AST and generates C++ source
code. Either all included (header) files or only source files
may be unparsed; this feature is important when transforming
user-defined data types, for example, when adding generated
methods. Comments are attached to AST nodes and unparsed
by the back-end. Full template handling is included with
transformed templates output in the generated source code.

VI. RELATED WORK

Several projects address optimization of user-defined ab-
stractions, including our own prior work on loop optimizations
for array abstractions [14], [22]. Among these, our goals are
most similar in spirit to the Broadway compiler by Guyer
and Lin [8]. They develop a specific annotation language
for Broadway, and then apply this work to optimize the
use of C libraries written in an object-oriented style. In this
paper, we consider a broader set of possible annotations that
can directly express relationships between function and data
abstractions, as well as the unique characteristics of object-
oriented languages.

Other compiler projects have also placed significant empha-
sis on optimizing libraries, especially in the general context
of Telescoping Languages[10]. The SUIF compiler [15],
MAGIK compiler [5], and MPC++ [4], [9] each provide
a programmable level of control over the compilation of
applications in support of library optimizations, but require
users to implement transformations within the compiler itself.

By contrast, Schupp,et al., develop for C++ an expression
simplifier, which users can extend for optimizing their own
abstract data types through annotations, inserted in a C++-style
syntax directly into the application [17]. Similarly, CodeBoost
(for C++) allows its users to assign simple tags to variables
in the source that can be interpreted by its rule-based rewrite
system [2]. We share the design goal of developing annotations
which may be provided by library developers who do not have
a compiler background.

Annotations, computed or specified off-line, are particularly
critical during run-time optimization. Krintz and Calder use
annotations to reduce the run-time cost due to analysis when
dynamically optimizing Java programs [12], and Grant,et al.,
use annotations similarly to guide specialization in their dy-
namic optimizer for C [6]. Although we do not pursue dynamic
optimization here, these projects emphasize the importance
and utility of annotations as an interface between the analysis
and optimizer.

We have not specified a particular annotation language in
this paper, but expect to draw from existing examples used
by the Broadway compiler, and possibly from more formal
logic-based systems used in verification [11].

Template Meta-Programming can also optimize user-defined
abstractions [18], but is effective only when optimizations are
isolated within a single statement. Optimizations such as loop
fusion across statements, which requires dependence analysis,
is beyond the capabilities of template meta-programming.

Prior work has also applied high-level optimizations to user-
defined abstractions. Specifically, Wu, Midkiff, Moreira and
Gupta [20] proposedsemantic inlining, which allows their
compiler to treat user-defined abstractions as primitive types in
Java. Artigas, Gupta, Midkiff and Moreira [1] devised analias
versioningtransformation that creates alias-free regions in Java
programs so that loop optimizations can be applied to Java
primitive arrays and the array abstractions from their library.
Wu and Padua [21] investigated automatic parallelization of
loops operating on user-defined containers, but assumed that
their compiler knew about the semantics of all operators. These
approaches encode knowledge within their compilers, and
thus cannot be used to optimize abstractions in general other
than those in their libraries. In contrast, we target optimizing
general user-defined abstractions by allowing programmers to
communicate explicitly with the compiler.

VII. C ONCLUSIONS ANDFUTURE WORK

This paper discusses the features of an annotation language
that we believe to be essential for optimizing user-defined
abstractions. These features should capture semantics of func-
tion, data, and object-oriented abstractions, express abstraction
equivalence (e.g., a class represents an array abstraction), and
permit extension of traditional compiler optimizations to user-
defined abstractions. Our future work will include develop-
ing a comprehensive annotation language for describing the
semantics of general object-oriented abstractions, as well as
automatically verifying and inferring the annotated semantics.
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